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ABSTRACT 

Designs are frequently optimised using Computer 
Aided Engineering (CAE) tools in combination with a 
specialised optimisation strategy. In this paper we 
describe a number of pitfalls that can be encountered 
when using such a strategy. Furthermore, we describe 
their remedies. Some remedies are demonstrated 
using a real-life case in picture tube design. 
 
Keywords: Design optimisation, pitfalls, picture tube 
design. 
 

1. INTRODUCTION 
 
Nowadays, products are more and more often 
designed on the computer. Designers use Computer 
Aided Engineering (CAE) tools for virtual 
prototyping. Although much faster than real 
prototyping, CAE simulations are still very time-
consuming. Due to freedom in design, there usually 
are astronomical numbers of alternatives. 
Furthermore, products have to meet many, possibly 
conflicting, design requirements originating from 
various engineering disciplines. To cope with this 
increasing complexity, techniques from statistics and 
mathematical optimisation, like Design of 
Experiments (DoE), Response Surface Modelling 
(RSM) (see Khuri et al, 1996), and Mathematical 
Programming, are more and more recognised as being 
indispensable in this area.  
However, these techniques are easily misused. The 
aim of this paper is to describe a number of pitfalls 
that may lead to wrong or inefficient use of these 
techniques and wrong interpretation of the results. 
Examples of such pitfalls are inappropriate model 
validation, local optima, and non-robust optima. We 
present a methodology to avoid these pitfalls, which 
is illustrated with a real-life application. This 
application originates from colour picture tube design 
and concerns the optimisation of the geometry of an 
electron gun, which is a complex non-linear 
optimisation problem.  
This paper is organised as follows. In Section 2 we 
describe our approach to design optimisation. Section 

3 describes pitfalls that we encountered, possible 
negative effects, and remedies that can be used to 
prevent them. Finally, in Section 4 we describe a 
practical case in which we illustrate how to handle some 
of the pitfalls correctly. We conclude this paper with 
some remarks. 
  

2. DESIGN OPTIMISATION METHODOLOGY 
 
We developed an optimisation approach that elaborates 
and extends on both RSM and what is called Design and 
Analysis of Computer Experiments (DACE); see Myers 
(1999) and Sachs et al (1989).  
The approach, implemented in the design optimisation 
tool COMPACT developed by CQM, consists of the 
following four steps: 
• Problem specification  
• Generation and simulation of an experimental 

design 
• Compact modelling 
• Prediction, optimisation and robust design 
In the sequel, each of these steps will be described in 
short. For a more detailed description we refer to den 
Hertog and Stehouwer (1999). 

 
Problem specification  

 
In the first step of the design optimisation methodology 
a mathematical problem specification is set up. This is a 
very important and often quite difficult phase. In the 
subsequent phases design decisions are made, based on 
the models that are developed according to 
specifications set up in the problem specification phase.  
In this phase, we have to decide which design 
parameters are most important, which response 
parameters are needed for judging the quality of a 
specific design and which objective function best 
captures the optimality requirements of a design. 
Furthermore, design restrictions have to be modelled 
and it has to be decided how many simulation runs are 
going to be performed. 

 
Generation and simulation of an experimental design 

 



After the specification of the problem, a simulation 
scheme is generated. This scheme consists of a set of 
simulation runs that are chosen such that they are 
located within the feasible design region. The design 
region is that part of the design parameter space that 
satisfies all bounds on design parameters defined 
during the problem specification phase. Once the 
experimental design has been created, the runs arising 
from this scheme are evaluated by means of 
simulation.  
 

Compact modelling  
 
The third step aims at obtaining a good model 
description in terms of design parameters for each 
response parameter. We call such models compact 
models as opposed to the detailed CAE-models. 
These models are based on the results of the 
simulations performed in the second step. The 
compact model types we use are first- and second-
order polynomial models (Montgomery, 1984) and 
Kriging models (Sachs, et al, 1989). Generally 
speaking, the latter models yield the best 
approximations when the underlying relationship has 
a highly non-linear structure with multiple local 
optima. Statistical model selection criteria are used to 
assess how well a compact model fits the underlying 
relationship.  
 

Prediction, optimisation and robust design 
 
The first three steps result in a compact model for 
each of the response parameters. In the fourth step 
these compact models are used for prediction, 
optimisation and robust design. We explain these 
notions next:  
Prediction: Using the compact models, the values of 
the response parameters can be predicted for any new 
design that is located in the feasible design region. 
Furthermore, possible infeasibilities due to response 
parameter bounds as well as the objective value of the 
new design are predicted. 
Optimisation: Optimisation is a method to find 
feasible settings for the design parameters that 
minimise (or maximise) the objective function. The 
optimisation is performed by incorporating the 
compact models in powerful linear programming (LP) 
and non-linear programming (NLP) solvers.  
Robust design: Monte Carlo techniques are used to 
analyse the robustness of a certain design to random 
deviations in the design parameters.  Note that as a 
direct result of fast prediction with help of the 
compact models, Monte Carlo simulations can now 
be carried out quickly. 
 
 

3. PITFALLS AND THEIR REMEDIES 
 
In this section we describe for each phase of our design 
optimisation approach a number of important pitfalls 
that we encountered in practice. For each pitfall we 
indicate the possible negative effects on the design 
process if it is not handled correctly. After that, we 
describe a remedy. 
 

Problem specification 
 
The importance of choosing suitable design and 
response parameters should not be underestimated. 
Often it is not obvious which design parameters must be 
taken into account. A too complex parameterisation 
should be avoided, but at the same time it must be 
complex enough to represent the real-life design in a 
satisfying way.  
 
Fitting compound responses 
Compound responses are known functions of the 
response parameters, that arise in the objective or the 
constraints of the optimisation problem. For example, it 
is often necessary to minimise the maximum over a 
number of responses. In the gun optimisation case 
described in Section 4, we give an example of such a 
compound response. There are two approaches to 
handle such compound functions: 
• Generate one compact model for this compound 

response. 
• Generate compact models for the original (non-

compound) responses, and substitute them into the 
known compound function during prediction and 
optimisation.  

 
We observe that often the first approach is followed, 
while in our opinion the last choice is the best one. The 
main reason is that in the second approach the known 
function structure is used, whereas in the first approach 
this has to be re-discovered by the compact model. As a 
result, the compact model for the compound response is 
usually less accurate than the models fitted to the 
individual responses. This has a negative effect on the 
prediction power of the models. 
Figure 1 illustrates both approaches. The x-axes 
represents a design parameter, the y-axes represents a 
response value. Fitting compact models for the 
individual responses depicted in Figure 1a is much 
easier than fitting a compact model for the compound 
response shown in Figure 1b. Note that following the 
approach of fitting individual responses results in more 
response models. This is usually not a problem though, 
since the amount of time needed to fit a compact model 
is usually negligible when compared to a simulation 
run.  
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Figure 1 a. Three non-compound responses 

     

rmax

 
Figure 1 b. One compound response 

 
Parameterisation issues 
Another important issue is the question what design 
parameters to choose and how to present them in the 
design optimisation problem. The importance of 
transformations of design or response parameters is 
often underestimated. This can lead to unnecessary 
highly non-linear compact models that do not give the 
designer much insight, whereas linear models might 
have been sufficient after a suitable transformation.  
Another situation that should be prevented, is a 
redundant parameterisation. For example, symmetry 
may cause multiple different runs to specify the same 
design. In such a parameterisation, usually a too large 
design space is modelled. Of course, using different 
design parameters or restrictions on combinations of 
design parameters can prevent this pitfall.  
The last situation we want to stress here, is the case in 
which there are integer-valued design parameters 
involved. There are many design parameters for 
which non-integer values do not make sense, for 
example, the number of holes in a board. It can also 
be the case that a certain product can only be obtained 
in a few pre-specified measures. Often these integer 
parameters are treated as continuous ones during the 
optimisation process. Our experience is that this 
solution is a good one as long as the integer design 
parameter is ‘almost continuous’, i.e., the range of 
this design parameter is still so large that round-off 
errors are not expected to have big impact on the 
quality of the final optimal design. But when there are 
only a few possible values for a certain design 
parameter, rounding off this design parameter might 
lead to a sub-optimal design.  
Another pitfall concerning integer design parameters 
is the use of an integer quantitative parameter to 
model a qualitative aspect of the design. For example, 
one may use an integer code to indicate a colour and 
subsequently use the code to create a compact model. 
Of course this leads to useless compact models. We 
go deeper into this subject when we discuss pitfalls in 
the optimisation step. 
 
Use of too many design parameters 
Another pitfall is the use of too many design 
parameters. This leads to what is often called the 
‘curse of dimensionality’: the number of required 
simulation runs increases rapidly as the number of 

design parameters increases. Furthermore, the 
construction of a good simulation scheme and the 
optimisation become very time-consuming. This pitfall 
can be prevented by using screening to select the most 
important design parameters or by using a different 
optimisation approach that is specially suited for high-
dimensional problems. In such cases, we use an iterative 
method. This method uses all information of previous 
simulations to generate a promising new simulation run. 
When enough simulation results are available, local 
approximating models of the simulation tool are created. 
The approximating models are then locally optimised 
within a so-called trust region to find the best feasible 
objective improving run. This trust region moves along 
the most promising direction. In every iteration, a new 
local linear approximation is built, and either a new 
simulation is evaluated or the trust region is decreased. 
For examples and detailed descriptions we refer to the 
work of Conn & Toint (1996), Powell (1994), and 
Toropov (1992). 
 

Generation and simulation of an experimental design 
 
The problem of choosing a simulation scheme is called 
Design of Experiments  (Montgomery, 1984). There is a 
vast range of experimental designs that all have their 
advantages and disadvantages. In the sequel, we 
describe a number of pitfalls in creating an experimental 
design.  
 
Classical DoE is used for deterministic situations 
Classical DoE has been developed for and is therefore 
mainly focused on physical experimentation in which 
experiments and measurements of response parameters 
are subject to noise. As a result, these schemes have 
certain characteristics that, although advisable for 
experimentation under uncertainty, are undesirable in 
deterministic situations. In computer experimentation 
noise usually does not play a role, since running a 
computer simulation twice generally yields exactly the 
same results. Therefore, no additional information is 
gained from the repeated simulation of the same 
simulation run, which is often proposed in classical 
DoE.  
Also due to the presence of noise, in physical 
experimentation it is often optimal to have design points 
that lie on the borders of the design region. In computer 



experimentation, the inner part of the design region is 
equally interesting.  
Summarising, a computer simulation scheme 
generated by classical DoE may contain replications, 
and may lead to simulation runs that are not evenly 
divided over the design region. The first characteristic 
results in waste of time, the second in bad 
approximating models. In our opinion simulation 
schemes for computer experimentation must be space 
filling and non-collapsing. In a space-filling design 
the evaluation points are spread out over the feasible 
design region as evenly as possible. A design is non-
collapsing if no two simulation runs have the same 
value for any design parameter. An example of a non-
collapsing simulation scheme is a Latin Hypercube 
Design (LHD).  
Using a space-filling and non-collapsing scheme, 
none of the time consuming simulations may become 
useless. We therefore propagate to use a space-filling 
Latin Hypercube Design for computer experiments, 
specially when no information about the response 
parameters is available. 
 
Design constraints are neglected which results in a 
larger design region than necessary  
From our design optimisation practice we 
experienced that the feasible design region is often a 
non-box region. For example, this happens when 
simulation runs in some part of the box constrained 
region have no physical interpretation or cannot be 
simulated. Moreover, it is always better to use prior 
knowledge on uninteresting or infeasible parts of the 
design space when creating a simulation scheme. The 
larger the design region, the more simulation runs are 
usually needed to be able to fit accurate 
approximating models. Therefore it is desirable to 
restrict the design region as much as possible by 
adding a priori known restrictions on combinations of 
design parameters. A drawback of most classical DoE 
methods is that they are only applicable for 
rectangular design regions.  Use of such a classical 
method almost automatically forces the designer to 
work with a box-shaped design region. To prevent 
this, we created a methodology to construct a 
constrained space-filling LHD (Stehouwer, Stinstra, 
Vestjens, to appear). This method can deal with any 
type of additional constraints on the design 
parameters, as illustrated in Figure 2. 
 

 
Figure 2. A two-dimensional constrained Space-
filling LHD 

Use of a too large simulation scheme at once 
Although every designer tries to develop a new product 
or process within as few simulation runs as possible, 
they often still perform all the simulations at once. This 
can lead to unnecessary simulation runs. It is better to 
first perform a small set of simulations, fit linear models 
and check whether these models are of sufficient 
quality. If they are not, some additional simulations can 
be performed and with help of the newly gathered 
information more complex models can be fitted. Of 
course, the second set of simulations should be chosen 
such that together with the first set they cover the design 
region as well as possible. Our methodology for the 
construction of a constrained space-filling LHD can 
generate new simulation runs given an already existing 
set of runs. The resulting design is non-collapsing and 
space-filling. 

 
Model generation 

 
Given the simulation results, it is important to create the 
best models possible. The pitfalls that we encountered 
in this phase can lead to less insight and incorrect 
optimisation results. 
 
Unnecessary complex modelling 
One of the pitfalls that we encountered in this step is the 
use of too complex models. It is often assumed that a 
more complex model should be used in any case, even if 
a simpler model is enough. This is dangerous for the 
following reasons: 
• A more complex model represents the data, while it 

should represent the trends. A model with enough 
degrees of freedom can perfectly fit through any 
data set. But these models generally do not predict 
very well. 

• The more complex the models are, the more 
complex the optimisation will become. This often 
results in the need for global optimisation strategies 
when the problem becomes non-convex. 

• More complex models like interpolators usually 
give the designer less insight into the underlying 
relationships.  

 



Simpler models should thus be preferred. A good 
way-of-working is to start with a linear model. If the 
model is not good enough, a quadratic model should 
be created. Note that this does not necessarily need to 
be a full quadratic model, i.e., a model with all 
interactions and quadratic terms. When a linear model 
does not fit well enough, we use a pruning strategy. 
This works as follows. First a full quadratic model is 
fit. Next, the least important term is removed from the 
model. The model is then rebuilt. If the new model 
performs better than the old, the removed term is 
deleted permanently and the least important term in 
the new model is removed. We continue this 
procedure until no improvement is found. 
If the pruned quadratic model is not good enough, we 
use an interpolating Kriging model (Sachs et al,1989). 
 
Lack of model validation 
Model validation is very important. Compact models 
are usually validated by calculating some validation 
statistic or cost function of the differences between 
simulated and predicted values. An example of such a 
statistic is the mean squared error function. Usually, 
such validation statistics are calculated on the same 
data set as was used to build the compact model. The 
lower the mean squared error, the better the model 
mimics the data. We call this approach the naïve 
validation approach. This leads to the disadvantage 
that it does not account for the effect of over-fitting: 
by making the compact model arbitrary complex, the 
function value can be made arbitrary small. In the 
extreme case of interpolating compact models (e.g., 
Kriging models, splines or sufficiently high-ordered 
polynomials) the value of such a cost function can 
easily be made equal to zero. 
 
It is not the mimic capabilities but the prediction 
capabilities of a model that we want to assess. We 
propagate the use of one of the following techniques 
for validating the prediction capabilities of a compact 
model. 
 
• Independent test set – Assess the prediction 

capabilities of the compact model on an 
independent test set and calculate the desired 
validation statistics. A major disadvantage is that 
extra, often time-consuming, simulations have to 
be performed. 

• Cross-validation – Re-estimate the compact 
model n times, with n equal to the number of data 
points, while each time skipping one of the data 
points. Every time the skipped data point is used 
to test the prediction capabilities by calculating 
the desired statistic.  

 
Optimisation 

 
In the last step of our design optimisation approach, 
we encountered four possible pitfalls. 
 

Naïve optimisation approach 
Designers often optimise their design one factor at a 
time. This means that they first try to find the optimal 
setting for the first design parameter, then fix this 
parameter, and continue this procedure for the other 
parameters until all design parameters are optimised 
given the fixed values of the already optimised design 
parameters. This approach can lead to an ‘optimal’ 
design that is not even locally optimal when non-linear 
compact models are used or constraints on combinations 
of design parameters are present. 
A much better approach is to use optimisation 
techniques from mathematical programming. The 
compact models can be incorporated in powerful LP or 
NLP solvers, like CONOPT (Drud, 1994). 
 
Multiple local optima 
When the NLP problem is non-convex, which is 
generally the case when interpolating models are used, 
the solution found by the solver will not automatically 
be the global optimum. This can lead to an incorrect 
‘optimal’ design, which is locally optimal but not 
globally. 
In such cases, it is wise to use a global optimisation 
strategy. We propagate the use of a multi-start 
optimisation technique. We start the local solver in 
several points in the feasible region and we select the 
best solution the solver returns. Of course, the starting 
points should be chosen in a clever way. In Step 2 of the 
compact model approach a space-filling Latin 
Hypercube Design was generated as a simulation 
scheme. We use these points as starting points for the 
local solver. Since they are well spread over the feasible 
region, we more likely end up with a global optimum. 
 
Robustness issues 
Once the optimal design has been found, it is important 
to consider its robustness. A pitfall that we frequently 
encounter, is the ignoring of the robustness of a certain 
design to random deviations in the design parameters. 
This can lead to unstable designs that are very sensitive 
to production tolerances.  
To prevent this instability, sometimes Monte Carlo 
techniques are used directly with CAE tools, which is 
usually quite time-consuming. However, using compact 
models, Monte Carlo sampling becomes very fast and 
enables the designer to analyze the robustness of a 
certain design to random perturbations.  
 
Integer optimisation 
When some of the design parameters must have an 
integer value, this is commonly achieved by rounding 
off the optimal design parameter values to the nearest 
integer value. This rounding of can lead to completely 
wrong optimal settings, as can be seen in the two 
dimensional design space in Figure 3. The dots indicate 
the feasible integer designs.  
 



Integer opt.
Continuous opt.

Objective direction.

 
Figure 3. The continuous optimum and the integer 
optimum 

This can be prevented by recognising the integer 
parameters as integer variables in the mathematical 
program and by consequently using a special mixed 
integer (non-) linear programming solver. For an 
overview of methods, see Biegler et al (1997). 
 

4. OPTIMAL GUN DESIGN 
 
During several projects, we have optimised several 
parts of the colour televisions at Philips. One of the 
optimised parts is the electron gun, which may be 
regarded as the heart of the colour picture tube. It 
generates the three electron beams, accelerates them, 
and ensures that they are focussed on the screen. 
Figure 4 shows a picture of an electron gun, 
containing a series of grids with holes. 
 

 
Figure 4. Electron gun  

 
The action of the electron gun is determined by the 
geometry of these grids and the application of 
different electrical voltages to them. The essence of 
gun design is to find the grid geometry that results in 
high quality guns. Among the most important quality 
characteristics are the spot sizes at several screen 
positions and at several applied voltages.   
 
The geometry of the grid is parameterised by seven 
parameters; see Table 1.  
 
 
 
 

Design 
parameter 

Physical meaning 

t2 The thickness of the second grid 
x2 The horizontal size of the 2nd grid 
y2 The vertical size of the 2nd grid 
s23 The distance between the 2nd and 3rd grids 
x4 The radius of the circle-shaped 4th grid 
x5 The horizontal size of the 5th grid 
y5 The vertical size of the 5th grid 

Table 1. The design parameters 

Figure 5 schematically depicts the definitions of the 
design parameters. All design parameters are bounded 
by a lower bound and an upper bound. 
 
The quality of a design is defined by the following 
response parameters: 
• The spot sizes in the centre of the screen  
• The spot sizes in the north-east corner of the screen  
 
Due to symmetry, the spot sizes on the entire screen are 
modelled by these response parameters. The spot sizes 
are measured in x- and y direction and at 6 currents. 
This results in a total of 24 response parameters. 
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Figure 5. The grid structure of the gun 

The design must be optimised with respect to the 
maximum spot size, i.e., the maximum spot size of the 
three electron beams on both positions, in both 
directions and using any current must be minimised.  
 
A naïve formulation of the problem is the following: 
 

7,...,1,..

)),...,((maxmin 71

=≤≤ iubdlbts

ddf

iii

r
r  

 
where  fr(d1,…,d7) denotes the value of compact model r 
in the design scenario (d1,…,d7). A better formulation of 
the optimisation problem is reached by breaking down 



the compound response (see Section 3) and 
introducing a dummy variable z that will converge to 
the maximal spot size. The reformulated problem 
looks as follows: 
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,),,...,(..
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iii
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For this study, a simulation budget of 100 simulation 
runs was available. Using a spacefilling Latin 
Hypercube Design, the 100 simulations were 
optimally spaced through the feasible design space. 
Four simulations failed due to numerical reasons. Of 
the other 96 simulation runs, the best one has a 
maximum spot size of 6.59.  
Next, we created polynomial models. Using cross 
validation, we concluded that the behaviour of nearly 
all response parameters is so non-linear, that 
polynomial models of second degree are not accurate 
enough. Therefore we used interpolating Kriging 
models in this case. The cross-validation statistic on 
these models is significantly better. For example, see 
the model validation statistics in Table 2 for a 
comparison of a quadratic model with the Kriging 
model for the spot size at 5 mA in the centre in y-
direction. Note that the R2, adjusted R2 and RMSE 
give no information about the interpolating model. 
 
 Quadratic model Kriging model 
R2 0.41 1.0 
Adj. R2 0.23 1.0 
RMSE 0.21 0.0 
Cross Val. 0.29 0.25 

Table 2. Model validation statistics 

For optimisation, we used the global optimisation 
approach described in Section 3. Using this 
technique, we found several local optima, whose 
objective values are given in Figure 6. The best local 
optimum that we found has a predicted objective 
value of 5.25.  

Histogram local optima
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Figure 6. Histogram of local optima 
 
 

The predicted optimum is significantly better than the 
best simulation. Of course, the predicted optimal 
scenario is simulated before the design is actually used. 
The predicted spot sizes in the optimum are depicted in 
Figure 7. Note that the maximum of 5.25 is obtained at 
several locations. This behaviour is typical when 
minimising a maximum.  
 

 
Figure 7. The optimal response values 

Due to tolerances, for example in the production 
process, finding the optimal setting is usually not 
enough. We have to look into the effect of the instability 
of design parameters in the objective value. To show 
this, we assume a normal distribution on the design 
parameters. Using the response surface models, a 
histogram can be created using Monte Carlo 
simulations. This procedure, using 20,000 samples, 
results in the histogram depicted in Figure 8. Note that 
small disturbances in a locally optimal design always 
lead to a deteriorated objective value.  
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Figure 8. Histogram of the optimal design 

We conclude that the local optimum that we found is 
sensitive for variability in the design parameters. We 
therefore start looking the second, third and fourth best 
local optima.  
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Figure 9. Histogram of the 4th best local optimum 

The histogram of the fourth best local optimum is 
depicted in Figure 9. The nominal and expected value 
are a bit higher, the variance of the maximal spot size 
is somewhat lower. 
 

CONCLUSION 
 
Products are more and more often designed on the 
computer. This has led to extensive research in design 
optimisation. A number of general-purpose design 
optimisation tools is nowadays available. Decisions 
that need to be made when using such a tool are often 
not trivial. It is therefore in our opinion very 
important that designers gain insight in what happens 
when applying these techniques. What can go wrong 
can easily be illustrated by the pitfalls in this paper.  
 
Besides helping designers to use design optimisation, 
the design optimisation community has the 
responsibility to create new tools and techniques that 
make it easier to design in a more and more complex 
world. Our current research is focussed at 
incorporating robust design in the optimisation step, 
i.e., minimise not only the expected objective value, 
but also the variance due to design instability. This 
functionality will be implemented in COMPACT. 
Furthermore, we are currently looking at integrating a 
mixed integer non-linear programming solver in our 
software in order to tackle the optimisation problems 
that integer design parameters introduce. Next to the 
compact model approach, we are working on the 
sequential toolbox SEQUEM, which enables us to 
solve cases that are large in terms of design 
parameters.  
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