14/03/2024


In aanloop naar ons Symposium ‘Beyond coincidence: understanding causality’, publiceren we hier een blogpost van onze gastspreker dr.ir. Richard A.J. Post. Richard Post is een postdoctoraal onderzoeker aan de Technische Universiteit Eindhoven (TU/e) die zich bezighoudt met causale inferentie en statistische formalisering van heterogeniteit van causale effecten. Hij heeft bijgedragen aan onderzoek op het gebied van epidemiologie en medische statistiek, met name op het gebied van de analyse van observatiedata en het identificeren van oorzakelijke verbanden in medische onderzoeken. Dat klinkt groots (en ook wel een beetje intimiderend), maar onze spreker maakt het voor ons allemaal begrijpelijk. Bijvoorbeeld een complex begrip als: covariabele aanpassing in etiologisch onderzoek. Klinkt ingewikkeld, toch? Maar maak je geen zorgen, Richard Post legt het je uit.

 

Covariate adjustment in etiologic research:
necessary, but no free lunch

Dr.ir. Richard A.J. Post

 

When studying an etiologic (study of causes) research question from observational data, most practitioners know they should adjust for confounders. Confounders are features that affect both the outcome and exposure of interest. As a result of the latter, one cannot simply compare the outcomes between groups of individuals with different levels of exposure. An observed difference between the groups will be a mixture of the actual causal effect of the exposure and the effect of the difference (i.e., non-exchangeability) in confounder distribution between the groups. For causal inference, it is thus crucial to balance the levels of these confounders among exposed and unexposed individuals using adjustment methods like stratification, matching, or inverse probability weighting [Chapter 7, 1]. 

Apart from confounding, spurious correlations can also arise when conditioning on a common cause of the exposure (A) and the outcome of interest (Y). These common causes are called colliders and give rise to a V-structure in causal graphs, as shown in Figure 1. If one would naively adjust for all measured candidate confounders correlated with both the outcome and the exposure, then selection bias is introduced due to the features that are no confounders but colliders and thus also meet this condition. So, one must use expert knowledge to consider what features might be colliders. 
 

Figure 1

Discussing whether a feature can be a collider is a bit more involved than wondering whether the feature might be caused both by the exposure and the outcome. It is also possible that there are more complicated causal structures, because of which adjustment for a measured feature M introduces selection bias [Chapter 8, 1]. For example, when the exposure and M have an unmeasured common cause U_1, and the outcome and M have an unmeasured common cause U_2, there is a M-structure as shown in Figure 2.  


 

Figure 2

The M-structure has underpinned a longstanding debate in causal inference: “Is it okay to correct for features measured pre-treatment?” [Section 4, 2]. Features measured before treatment can clearly not be colliders in the classical sense since the treatment cannot cause them. However, an underlying M-structure might still exist so that adjustment can result in selection or M-bias.  For example, outcome Y can be lung cancer, treatment A taking selective serotonin reuptake inhibitors, while the measured M indicates whether an individual suffers from coronary artery disease, where M is affected by the unmeasured variables depression status (U_1) and smoking status (U_2) [3]. Without adjusting for M, it would become clear that A does not affect Y, but when adjusting for M, a spurious correlation would be found. 

In summary, one must not naively include all observed features in a model without carefully thinking about the possible selection bias that can be introduced this way.  


References
[1] Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.
[2] Ding P, Miratrix L (2015). To Adjust or Not to Adjust? Sensitivity Analysis of M-Bias and Butterfly-Bias. Journal of Causal Inference, 3(1), 41-57. https://doi.org/10.1515/jci-2013-0021
[3] Liu W., Brookhart MA, Schneeweiss S, Mi X, Setoguchi S (2012). Implications of M Bias in Epidemiologic Studies: A Simulation Study, American Journal of Epidemiology, 176(10), 938–948, https://doi.org/10.1093/aje/kws165

 

Symposium - Beyond coincidence: understanding causality

We hebben de maximum capaciteit voor het causaliteit-symposium op 21 maart 2024 inmiddels bereikt. Voor meer informatie over dit of een eventueel volgend symposium, neem je het beste contact op met: Martijn Gijsbers.

 

Wil je op de hoogte blijven van het laatste nieuws van CQM, volg ons op LinkedIn of meld je aan voor onze digitale nieuwsbrief

 

Image by Michal Jarmoluk from Pixabay.

 

Martijn Gijsbers
Martijn Gijsbers helpt je graag verder Neem contact op